
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Professor Sophie Engle
Department of Computer Science

Lambda Expressions
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Avoid Naming Single Use Variables
3

1. Map<String, Set<String>> elements = …
2.

3. Set<String> set = elements.get("hello");
4. set.add("world");
5.

6. elements.get("hello").add("world");

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Avoid Naming Single Use Classes
4

1. PathMatcher matcher = new PathMatcher() {
2. @Override
3. public boolean matches(Path path) {
4. return path.toString().endsWith(".txt");
5. }
6. };

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Anonymous Classes
5

● Allows the declaration (i.e. superclass/interface),
definition (i.e. method implementation), and
instantiation (i.e. constructor call) of a class

● Always an inner class

● Never an abstract, static, or final* class

https://docs.oracle.com/javase/specs/jls/se17/html/jls-15.html#jls-15.9.5

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/specs/jls/se17/html/jls-15.html#jls-15.9.5

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Anonymous Methods?
6

● Many interfaces only have one abstract method
○ PathMatcher, Comparator, Runnable, etc.

● Is there shortcut syntax for defining these methods?
○ e.g. array initialization, auto boxing/unboxing, …

● What does it mean for a method versus a class to be
anonymous?

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/FunctionalInterface.html

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/FunctionalInterface.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Brief History

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Lambda Calculus
8

● Name comes from symbol Λ λ (upper/lower lambda)
● Invented in 1930s by Alonzo Church (1903–1995)
● Can simulate any Turing machine
● All functions are anonymous functions
● Computational model underlying many functional

programming languages
https://en.wikipedia.org/wiki/Lambda_calculus

https://www.cs.usfca.edu/
https://en.wikipedia.org/wiki/Lambda_calculus

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Functional Programming
9

● Different programming paradigm
○ Uses expressions (returns a value) vs statements
○ Avoids side effects and mutable data
○ Functions may be parameters to other functions

● Produces more concise code and easier to parallelize

● Many languages support functional programming
https://en.wikipedia.org/wiki/Functional_programming

https://www.cs.usfca.edu/
https://en.wikipedia.org/wiki/Functional_programming

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Java Implementation

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Functional Interfaces
11

● An annotation applied to interfaces with exactly one
abstract method
○ Does not count default methods or overriding

public Object methods
● Instances created with lambda expressions, method

references, or traditionally (implements keyword,
anonymous inner class)

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/FunctionalInterface.html

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/FunctionalInterface.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Functional Interfaces
12

1. package java.nio.file;
2.
3. @FunctionalInterface
4. public interface PathMatcher {
5. boolean matches(Path path);
6. }

https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/nio/file/PathMatcher.java
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/FunctionalInterface.html

https://www.cs.usfca.edu/
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/nio/file/PathMatcher.java
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/FunctionalInterface.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Package java.util.function
13

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/function/package-summary.html

Functional Interface Description Method

Function<T,…,R> Accepts n args and produces a result R apply(T t, …)

Consumer<T,…> Accepts n args and returns no results void accept(T t, …)

Predicate<T,…> Accepts n args and returns a boolean boolean test(T t, …)

Supplier<R> Accepts no args and supplies results R get()

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/util/function/package-summary.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Lambda Expressions
14

● Compact definition of a functional interface
○ Almost like a shortcut syntax for anonymous inner

classes of interfaces with only one abstract method

● Can be passed to other methods as parameters

● Can be considered anonymous methods (methods
without a name)

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Lambda Expression Syntax
15

(a, ...) -> { statements; ... }

● Parameters enclosed in parenthesis () if more than
one comma-separated parameter

● The -> arrow token (a - dash and > greater than sign)

● The body enclosed in curly { } braces if not a return
statement or multiple statements

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Anonymous Class Example
16

1. PathMatcher matcher = new PathMatcher() {
2. @Override
3. public boolean matches(Path path) {
4. return path.toString().endsWith(".txt");
5. }
6. };

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

17

1. PathMatcher matcher1 = new PathMatcher() {
2. @Override
3. public boolean matches(Path path) {
4. return path.toString().endsWith(".txt");
5. }
6. };
7.

8. PathMatcher matcher2 = (Path path) -> {
9. return path.toString().endsWith(".txt");
10. };

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Lambda Expression Example
18

1. PathMatcher m1 = (Path p) -> {
2. return p.toString().endsWith(".txt");
3. };
4.
5. PathMatcher m2 = p -> p.toString().endsWith(".txt");
6.
7. Predicate<Path> m3 = p -> p.toString().endsWith(".txt");

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/nio/file/PathMatcher.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Method References
19

● Some lambda expressions call an existing method
○ e.g. s -> s.trim()

● Use method references to use existing methods instead
of using a lambda expression
○ e.g. String::trim

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Method References
20

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Reference Pattern Example

Constructor ClassName::new HashSet::new

Static method ClassName::staticMethod String::valueOf

Instance (arbitrary) ClassName::instanceMethod String::trim

Instance (particular) instance::instanceMethod mySet::add

https://www.cs.usfca.edu/
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Functions as Objects?
21

● Lambda expressions are NOT objects!
○ The “type” is a functional interface
○ Does not inherit from Object
○ Cannot use the this, super, or new keywords*

● Can only interact with “effectively final” variables
outside its scope

https://www.cs.usfca.edu/

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

22

https://sjengle.cs.usfca.edu/

